

# A Comparison of FreeSurfer, HippUnfold, and Automatic Segmentation of Hippocampal Subfields (ASHS) for Estimating Hippocampal Volumes in Early Childhood

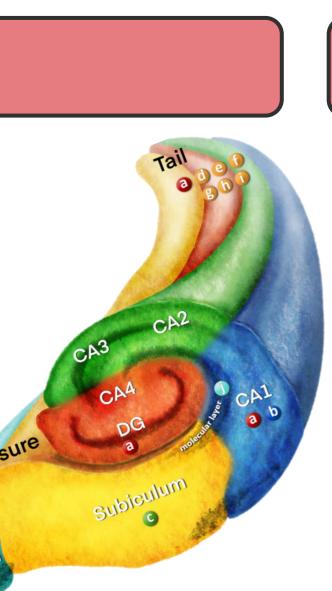
Zehua Cui<sup>a</sup>, Jade Dunstan<sup>a</sup>, Isabella Schneider<sup>a</sup>, Venkata Sita Priyanka, Illapani<sup>b</sup>, Hua Xie<sup>b</sup>, Leigh Sepeta<sup>b</sup>, Tracy Riggins<sup>a</sup> <sup>a</sup> University of Maryland, College Park, Department of Psychology <sup>b</sup> Children's National Hospital, Washington DC For questions or comments, please contact: zcui12@umd.edu

### **INTRODUCTION**

- The hippocampus (Hc) is a complex structure comprised of multiple internal circuits (i.e., subfields) that subserve memory across the lifespan (Amaral & Lavenex, 2007), including
  - Cornu Ammonis (CA) fields 1-4,
  - Dentate Gyrus (DG)
  - Subiculum

- Hippocampal subfields are thought to undergo extended postnatal development (Lavenex & Lavenex, 2013), however studies with human children are limited, partially due to methodological limitations.
- Existing studies on Hc subfields employ a range of publicly available segmentation software packages, which have different input resolution thresholds. Yet, scarce research has investigated the performance and reliability across these packages, especially among young children.
- **AIM:** To compare Hc subfield volumes (CA1, CA2-4/DG, subiculum) extracted by three automated software packages — FreeSurfer, HippUnfold, and Automatic Segmentation of Hippocampal Subfields (ASHS), among a sample of 4-8 years old children.

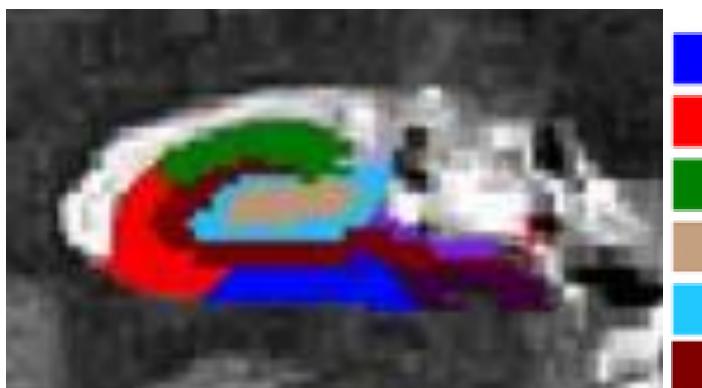
#### METHODS


**Sample:** We utilized a subset of 19 children from a larger study ( $M_{age} = 6.85 \pm 1.59$ ; 47.4% female)

**Image Acquisition and Processing** 

- Whole-brain T1-weighted .9mm isotropic scans were acquired for processing in FreeSurfer 7.1.1 (Fischl, 2012) and HippUnfold 1.4.1 (DeKraker et al., 2022).
- T2-weighted scans (.4mm x.4mm x 2mm) of the medial temporal lobe were acquired for ASHS processing (Yushkevich et al, 2014).

#### Analysis


• Pearson correlations and intraclass correlations were run to investigate similarities and differences in subfield volumes extracted using the three methods.



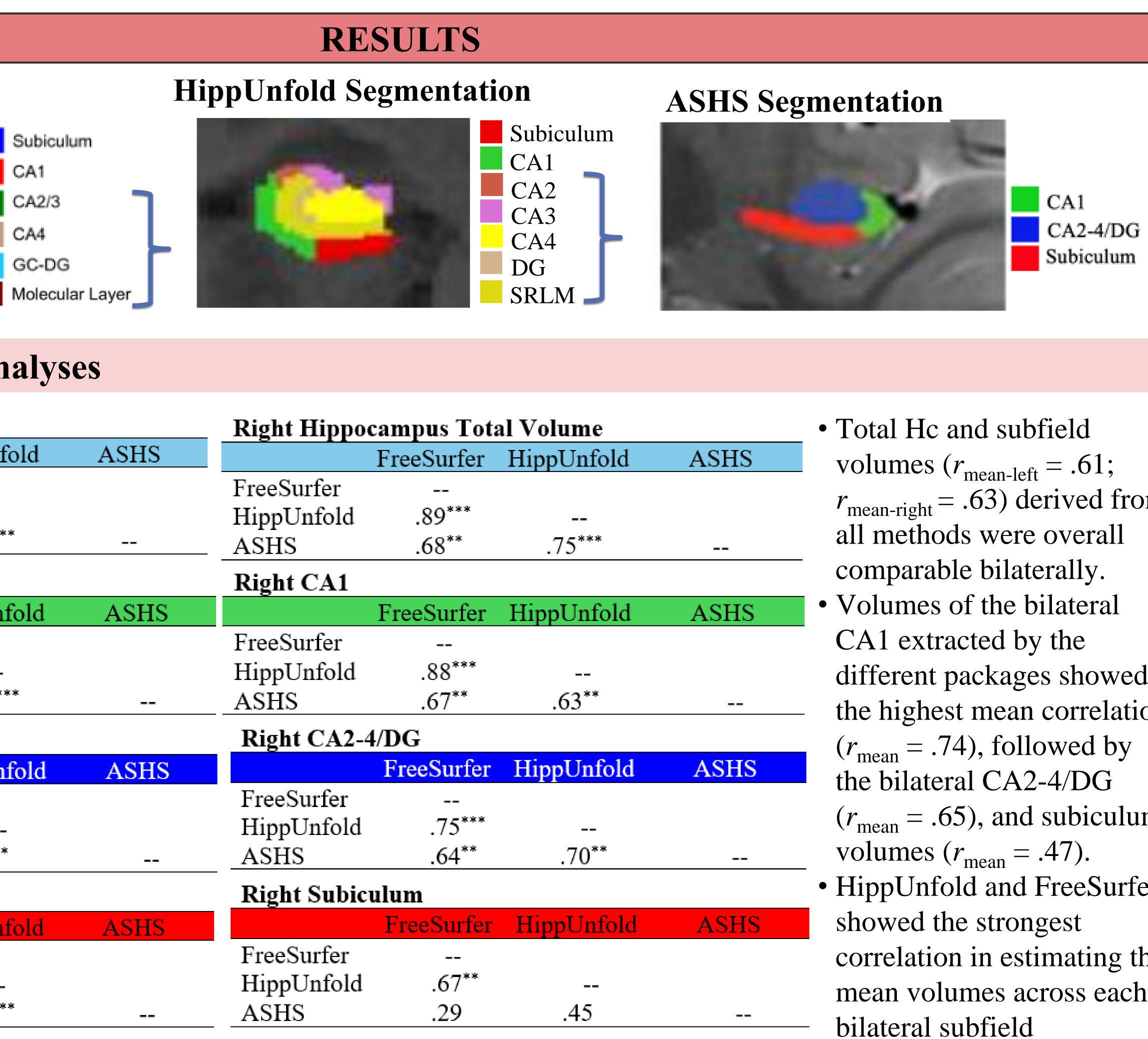




#### **FreeSurfer Segmentation**



Subiculum CA1 CA2/3 CA4 GC-DG


### **Pearson Correlation Analyses**

| Left Hippocampus Total Volume |            |             |  |
|-------------------------------|------------|-------------|--|
|                               | FreeSurfer | HippUnfold  |  |
| FreeSurfer                    |            |             |  |
| HippUnfold                    | .72**      |             |  |
| ASHS                          | .67**      | $.80^{***}$ |  |
| Left CA1                      |            |             |  |
|                               | FreeSurfer | HippUnfold  |  |
| FreeSurfer                    |            |             |  |
| HippUnfold                    | .79***     |             |  |
| ASHS                          | .72***     | .73***      |  |
| Left CA2-4/DG                 |            |             |  |
|                               | FreeSurfer | HippUnfold  |  |
| FreeSurfer                    |            |             |  |
| HippUnfold                    | .58**      |             |  |
| ASHS                          | .68**      | .55*        |  |
| Left Subiculum                |            |             |  |
|                               | FreeSurfer | HippUnfold  |  |
| FreeSurfer                    |            |             |  |
| HippUnfold                    | .53*       |             |  |
| ASHS                          | .31        | .58**       |  |

#### **Intraclass Correlation Analyses**

- Intraclass correlations in terms of absolute agreement indicated:
- **GOOD reliability** for left  $CA1_{ICC(2,1)} = .75$ , right  $CA1_{ICC(2,1)} = .81;$
- **DODERATE reliability** for left right total<sub>ICC(2,1)</sub> = .62, right CA2-
- **DOOR reliability** for left CA2-4/

 $subiculum_{ICC(2,1)} = .41$ , right subic



$$total_{ICC(2,1)} = .71,$$
  
 $4/DG_{ICC(2,1)} = .59;$   
 $/DG_{ICC(2,1)} = .36, lef$   
 $culum_{ICC(2,1)} = .12.$ 

## **CONCLUSION AND NEXT STEPS**

- bilateral subiculum. Our next steps are to:
- spatial overlap between methods;



Development Lab

| ASHS |   |
|------|---|
|      |   |
|      |   |
|      |   |
| ASHS |   |
|      |   |
|      |   |
|      |   |
| ASHS |   |
|      |   |
|      |   |
|      | - |
| ASHS |   |
|      |   |
|      |   |

 $r_{\text{mean-right}} = .63$ ) derived from different packages showed the highest mean correlation  $(r_{\text{mean}} = .65)$ , and subiculum • HippUnfold and FreeSurfer

correlation in estimating the mean volumes across each

Our analyses revealed considerable variability in the estimations of subfield volumes between the methods, especially for the

• Compare the three packages to our manual tracing and calculate

□ Investigate similarities and differences between the methods in estimating subfield volumes in the Hc head and body;

□ Test if relations between subfield volumes and memory

performance differ as a function of package used.